DYNAMIC LOADING METHODOLOGIES (Flutter Response of a Damaged Fighter Aircraft Wing)

2002 USERS GROUP CONFERENCE

10 - 13 JUNE 2002 AUSTIN, TEXAS

Dr. Monty A. Moshier, RHAMM Technologies LLC Dr. Ronald L. Hinrichsen, University of Illinois

Acknowlegements

- Computer Resources Provided by ASC/MSRC
- This Work is Funded by the Joint Technical Coordinating Group for Aircraft Survivability (JTCG/AS), Vulnerability Reduction Subgroup
- Technical oversight by 46th Test Wing, Aerospace Vehicle Survivability Flight, Wright-Patterson AFB, OH

Overview

- Background
- Model Validation Plan

Model Validation Results

- Sample Cases
- Conclusions

Resources Used

- Software:
 - Pre-Processing: MSC/PATRAN, LS-INGRID, FEMB
 - Analysis: LSDYNA3D Version 960 (Livermore Software Technology Corp.)
 - Post-Processing: LS-POST, ENSIGHT7
- Hardware: ASC/MSRC (1 to 8 Processors)
 - SGI Origin 2000
 - COMPAQ GS-320, ES-40, ES-45
 - SGI Linux (RedHat 7.)
- 68 Different Cases
 - 25000 Degrees of Freedom
 - Approximately 19 Hours of CPU Time/Case
 - 1300 Total CPU Hours

Background

- Dynamic => Need to Know Stiffness and Mass Distributions
- Mass Distribution => Need to Know Store & Fuel Loading on Wings
- Stiffness and Mass Distributions Change Instantaneously When Damage is Inflicted

- 2-Spar Wing
- NACA 0012 1.0m-root
- NACA 0006 0.3m-tip
- 7.5m Span
- Flutter Speed 250m/sec

Sample Problem

- Model Is Fixed At Root Chord
- Air Flow And Structure Modeled Tip To Tip

Damage Well Below Flutter Speed

RHAMM Technologies

Damage Well Below Flutter Speed

Damage Near Flutter Speed

RHAMM Technologies

Damage Near Flutter Speed

RHAMM Technologies

Frequently Used Configurations

Structural Model

Aero Coarse Mesh

Aero Mesh Refinement

Model Validation Results

- Displacement Comparisons
 - Static Line Load Simulation
 - Dynamic
 - Experimental Data

Static Line Load Simulation

Dynamic Validation

Dynamic (Eigenvalues Verified)

RHAMM Technologies

- Typical HEI HRAM Damage
 - Loss of spars & skin
- Mach 0.80, 0.92

 – Near Wing Root Damage
 - Clean Wing
 - With Store-01
 - 3 & 6 Degree Angle of Attack
- Mach 0.95 Near Wing Tip Damage
 - Clean Wing

Test Component Fabricated

Photograph Of Damaged Box

HRAM Modeling

Clean Wing - Mach 0.80 Angle of Attack 6 Degrees

Clean Wing - Mach 0.80 Angle of Attack 6 Degrees

Store-01 - Mach 0.92 Angle of Attack 3 Degrees

Store-01 - Mach 0.92 Angle of Attack 3 Degrees

Clean Wing - Mach 0.95 Angle of Attack 3 Degrees

Clean Wing - Mach 0.95 Angle of Attack 3 Degrees

Clean Wing Tip Damage - Mach 0.95
Angle of Attack 3 Degrees

Possible Strategy

RHAMM Technologies

Stores Store-01, Store-02, Store-03, etc.

Aircraft Selection

Flight Conditions
Velocity, Angle of Attack,
Altitude, etc.

Shot Line Locations & Fuel Load

Dynamic Finite Element Modeling

Dynamic Testing Condit

Superposition?

Survives ???

Static Testing Conditions

Conclusions

- Dynamic Loading Methodology Should Consider
 - Stores, Aircraft, Flight Conditions, & Shot Lines
- Testing
 - Static / Dynamic
- Possible Solution
 - Hydraulic / Pneumatic
- Dynamic ground testing to be applied when flutter is not predicted
- Computational analysis used as the primary tool for post damage survivability when flutter is predicted